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J. Phys. A: Math. Gen. 23 (1990) L297-L300. Printed in the U K  

LETTER TO THE EDITOR 

Numerical calculation of wavefunctions near a strongly 
repulsive potential 

M J Jamieson 
Department of Computing Science, University of Glasgow, Glasgow, U K  

Received 12 May 1989, in final form 13 December 1989 

Abstract. It is shown that inverse-power representations of the strongly repulsive potentials 
sometimes used in molecular eigenvalue and scattering calculations introduce extra errors 
into the wavefunctions, not normally expected from the finite difference integration for- 
mulae used. 

In the numerical determination of bound state and scattering wavefunctions arising 
in molecular calculations the potentials and energies, being multiplied by the large 
reduced masses, become large themselves especially at short range. Although the 
potentials are the sums of Coulomb interactions between the constituent charged 
particles and therefore cannot be more singular than the Coulomb potential itself, they 
are often replaced by strongly repulsive potentials for computational convenience. 
This can cause difficulties in multichannel calculations where it is important to know 
the potentials accurately because reaction cross sections can be altered significantly 
by interference effects at short range, as shown by Cooper et a1 (1987). In single-channel 
calculations the lack of accurate short-range potentials is less important and is usually 
compensated for by a judicious choice of starting point for the integration (where the 
wavefunction is taken as zero) and use of sufficiently small step lengths in the finite 
difference integration formula. However, a useful test of the reliability of a numerical 
result found by finite difference methods is to recalculate it for different step lengths 
h, to check for correct h dependence (Fox and Mayers 1968). It is shown below that, 
in this context, an accurate short-range potential can be important even in a single- 
channel calculation because, for example, replacing it by an inverse power introduces 
unexpected h dependence. Coulomb potentials and centrifugal barriers induce errors 
which are simple powers of h (Jamieson 1988) but the extra h dependence is more 
dramatic for inverse powers exceeding two. Frank et a1 (1971) in an extensive review 
include the latter potentials amongst the singular. It is the singular inverse-power 
potentials which introduce errors with the more exotic h dependences. It is shown 
that such a singular potential introduces a solution of the differential equation violating 
the inner boundary condition into the wavefunction numerically determined by a finite 
difference integration formula. This unwanted solution alters any calculated phase 
shift or eigenfunction and eigenvalue. The analysis below generalises an earlier 
investigation (Jamieson 1983) of the effect of an inverse sixth-power potential on the 
eigenvalues of an harmonic oscillator. 

At small internuclear distance r, the equation to be solved is 

y " ( r )  = c2r-2q-2y(r )  (1) 
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with the inner boundary condition that y ( 0 )  vanishes; here cz is a positive constant 
and 2q is a positive integer. In molecular calculations it is tempting to use such 
short-range potentials because they are large at small r, are continuous and with careful 
choice of c and q do not unduly upset the medium- and long-range potentials. This 
equation is obtained in Cayley's method for solving the Riccati equation (Watson 
1944, with q replacing -4). The independent solutions of ( l ) ,  u ( r )  and u( r ) ,  are given 
by r i ' z K i , 2 q ( c / q r q )  and r1'z11,2q (c/qrq) where Z and K denote modified Bessel 
functions; the solution u ( r )  vanishes at the origin while u ( r )  does not. The correct 
solution is proportional to u ( r ) .  We investigate the error when the simplest finite 
difference formula, that of Hartree, is used to solve the equation with starting conditions 

y(O)=O 

y ( h )  = 1 .  

As in the earlier paper we use the error analysis of Mayers (1964) because of the 
singularity. The leading error (in h )  w ( r )  satisfies the differential equation 

w"(r) = czr-2q-zw(r) +A h 2 u " " ' ( r ) / u ( h )  r 2  h. ( 3 )  

The value of w(2h) must be constructed from the finite difference formula. The 
boundary conditions on the error are 

w ( h ) = O  
(4) 

w(2h) = u(2h)/u(h) - 2 -  C Z h - Z q .  

w ( r )  = A ( h ) u ( r ) / u ( h )  + B ( h ) u ( r ) / ~ ( h ) + p ( r ) u ( r ) / u ( h )  

The error may be written as the complete primitive 

( 5 )  

where the last term is a particular solution of equation (3) and A ( h ) ,  B ( h )  are to be 
determined from (4); the ratios are used for algebraic convenience because they remove 
constant multipliers. The first term and the particular solution vanish at the origin 
and merely alter the overall normalisation of the solution of equation ( 1 )  to be used 
in a scattering or eigenvalue calculation but the second term is an error. We find 

B ( h )  = [p(2h)  - p ( h )  - 1 + ( 2 +  c'h-'Y)u(h)/u(2h)]/[l - ( u ( h ) / u ( 2 h ) } / { u ( h ) / u ( 2 h ) } ] .  
(6) 

For small values of r the arguments of the Bessel functions are large and we can 
use asymptotic expansions (Watson 1944) 

u ( r ) / u ( h )  = ( r / h ) ' q - + 1 ) ' 2  exp(-c/qrq + c/qhq) 

u ( r ) / u ( h )  = ( r / h ) ' q + 1 ) ' 2  exp(c/qrq - c/qhq) 

and after some algebra we find the function p ( r )  of the particular solution to be 

p ( r )  = -{hzc3/[24(3q +2)]}F3"' 

so that 

B ( h ) =  ( { ~ ~ / [ 2 4 ( 3 q + 2 ) ] } h - ~ ~ ( l  -2-3q-2) - 1 + ( 2 + ~ ~ h - ~ ~ ) 2 - ' ~ + ' ) ' ~  

( 7 )  

(9) 
From (51, ( 7 )  and (9) we see that the error term has a complicated dependence on 

h and that it vanishes if h vanishes. However, we have the unexpected result, verified 

x exp[-c( 1 - 2-q)/qh4])( 1 - exp[-2c(l -2-q)/qhq])-i. 
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numerically earlier (Jamieson 1983), that the smaller the value of c is the smaller is 
the value of h required to reduce the error. This seems contradictory since it suggests 
that the worse the singularity is, the easier it is to deal with numerically. It can be 
explained as follows. We have omitted the non-singular (in the terminology of Frank 
er al(1971)) potential. The Hartree formula can follow the solution for the non-singular 
potential but away from the origin it can also follow the solution for the singular 
potential reasonably well. Near the origin it attempts to follow the solution under the 
influence of the very rapidly changing singular potential. If c is small most of the 
effect of this potential occurs in the interval (0, h ] .  Because the finite difference formula 
effectively starts at r = h (the wavefunction being set to zero at the origin) it misses 
much of the effect of the singular potential. The potential cuts off quite sharply at 
r = c ” ~ ,  particularly if q is large. For larger values of c the cut-off does not occur until 
several steps of the finite difference integration have been completed and the formula 
makes a better attempt at following the solution away from the origin. 

The error must vanish if c is allowed to vanish for a fixed step h. From equation 
(9)  and the special case discussed earlier (Jamieson 1983) we see that this does not 
appear to be so. This is because in the derivation of equation (9) and the special case 
we have used asymptotic expansions for the Bessel functions which are not valid for 
small c. We must use instead series expansions in ascending powers of c (Watson 1944) 

U( r)/ U( h )  = x / h  + O( cl/q) 

u(r) /u(h)= 1. 

If q = f the Bessel functions are of integer order. Use of the appropriate series for 
K l ( 2 c /  r 1 j 2 )  shows that there is an extra term of order c2  In( c )  in the first of equations 
(10) which does not affect our subsequent discussion. We find 

p ( r )  = - { ( 2 q +  1)(2q+2)h2c2/[12(2q + 3 ) ] } r - 2 q - 3  

In the numerator of expression (6) for B ( h )  we see that the first two terms and the 
last term are proportional to cz while the rest have some cancellation leaving a term 
in c ’ ’ ~  so that the whole expression vanishes if c vanishes, as required. 

The complicated form of the error does not depend on the choice of Hartree’s 
integration formula. It arises because the singularity is an essential one and similar 
behaviour is expected with any Lagrangian integration formula, including those desig- 
ned for stiff differential equations. An example of the latter is, in obvious notation, 

where z denotes the two-element vector with components y and y’ ,  F is a two-by-two 
matrix with unit diagonal elements and upper right and lower left elements of zero 
and fhc2r-2q-2 respectively and G is a two-by-two matrix with diagonal elements of 
_+hZCzr-29-2 and zero, and upper right and lower left elements of h and 3hc2r-24-2 
respectively. It is easy to show that the leading error satisfies equation (3) with the 
inhomogeneous term reversed in sign; the boundary conditions (4)  are modified. The 
error is given by equation ( 5 )  differing only in the particular solution and subsequent 
analysis reveals the same kind of exotic behaviour as we have inferred above. 

In conclusion we see that the representation of a strongly repulsive potential by a 
singular potential introduces an exotic-looking error which can be removed by use of 
a small enough step length. It vanishes, as it should, as the strength of the potential 
is reduced. The error must be taken into account when testing numerical software. It 
is best to start with a small enough step that only the other simple error terms remain. 
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It is worth noting that calculations which are made by starting the integration away 
from the origin at r,, say, are subject to a different error induced by the boundary 
condition that the wavefunction vanishes at r,, not at the origin. This error depends 
on the ratio U( r o ) / u (  r,) which here is approximately exp( - 2 c / q r O q )  provided r, is 
small enough to allow use of the asymptotic expansion (7). 

I am pleased to thank Dr George Victor and Dr Stephen Lepp for some useful 
discussions. 
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